A non-proteolytic function of ubiquitin in transcription repression
نویسندگان
چکیده
Regulation of transcription is vitally important for maintaining normal cellular homeostasis and is also the basis for cellular differentiation, morphogenesis and the adaptability of any organism. Transcription activators, which orchestrate time and locus-specific assembly of complex transcription machinery, act as key players in these processes. One way in which these activators are controlled is by the covalent attachment of the conserved protein, ubiquitin (Ub), which can serve as either a proteolytic or non-proteolytic signal. For a subset of the activators, polyubiquitination-dependent degradation of the activator controls its abundance. In these cases transcription activation can require protein synthesis as well as internal or external stimulus. In contrast, other activators have been reported to undergo mono- or oligoubiquitination that does not lead to protein degradation. The mechanisms by which monoubiquitination of transcription activators affect their activities have been poorly understood. In a recent study, we demonstrated that monoubiquitination of some transcription activators can inhibit transcription by recruiting the AAA+ ATPase Cdc48 (also known in metazoan organisms as p97 or valosin-contain protein, VCP), which then extracts the ubiquitinated activator from DNA.
منابع مشابه
The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation.
Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and ot...
متن کاملDisruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway.
Inhibition of proteasome-mediated protein degradation machinery is a potent stress stimulus that causes accumulation of ubiquitinated proteins and increased expression of heat shock proteins (Hsps). Hsps play pivotal roles in homeostasis and protection in a cell, through their well-recognized properties as molecular chaperones. The inducible Hsp expression is regulated by the heat shock transcr...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملKeap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation ...
متن کاملThe mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function
TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2014